You Never Escape Your...

Relations

Relations

•If we want to describe a relationship between elements of two sets A and B, we can use **ordered pairs** with their first element taken from A and their second element taken from B.

•Since this is a relation between two sets, it is called a binary relation.

•Definition: Let A and B be sets. A binary relation from A to B is a subset of A×B.

•In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that $(a, b) \in R$ and a<u>R</u>b to denote that $(a, b) \notin R$.

Relations

When (a, b) belongs to R, a is said to be related to b by R.
Example: Let P be a set of people, C be a set of cars, and D be the relation describing which person drives which car(s).

- •P = {Carl, Suzanne, Peter, Carla},
- •C = {Mercedes, BMW, tricycle}
- •D = {(Carl, Mercedes), (Suzanne, Mercedes), (Suzanne, BMW), (Peter, tricycle)}

•This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

Functions as Relations

•You might remember that a function f from a set A to a set B assigns a unique element of B to each element of A.

- •The graph of f is the set of ordered pairs (a, b) such that b = f(a).
- •Since the graph of f is a subset of A×B, it is a relation from A to B.
- •Moreover, for each element a of A, there is exactly one ordered pair in the graph that has a as its first element.

Functions as Relations

•Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph.

•This is done by assigning to an element $a \in A$ the unique element $b \in B$ such that $(a, b) \in R$.

Relations on a Set

•Definition: A relation on the set A is a relation from A to A.

•In other words, a relation on the set A is a subset of $A \times A$.

•Example: Let A = $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation R = $\{(a, b) | a < b\}$?

Relations on a Set •Solution: $R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$

R	1	2	3	4
1		Х	Ж	х
2			ж	×
3				х
4				

Relations on a Set

•How many different relations can we define on a set A with n elements?

•A relation on a set A is a subset of A×A.

•How many elements are in A×A?

•There are n² elements in A×A, so how many subsets (= relations on A) does A×A have?

•The number of subsets that we can form out of a set with m elements is 2^m . Therefore, 2^{n^2} subsets can be formed out of A×A.

•Answer: We can define 2^{n²} different relations on A.

We will now look at some useful ways to classify relations.
Definition: A relation R on a set A is called reflexive if (a, a)∈R for every element a∈A.

•Are the following relations on {1, 2, 3, 4} reflexive?

$R = \{(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)\}$	No.
R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)}	Yes.
$R = \{(1, 1), (2, 2), (3, 3)\}$	No.

Definition: A relation on a set A is called irreflexive if (a, a) IR for every element a IA.

•Definitions:

•A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

•A relation R on a set A is called **antisymmetric** if a = b whenever $(a, b) \in R$ and $(b, a) \in R$.

•A relation R on a set A is called **asymmetric** if $(a, b) \in R$ implies that $(b, a) \notin R$ for all $a, b \in A$.

•Are the following relations on {1, 2, 3, 4} symmetric, antisymmetric, or asymmetric?

 $\mathsf{R} = \{(4, 4), (3, 3), (1, 4)\}$

antisym.

- •Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for a, b, $c \in A$.
- •Are the following relations on {1, 2, 3, 4} transitive?

```
R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}

R = \{(1, 3), (3, 2), (2, 1)\}

R = \{(2, 4), (4, 3), (2, 3), (4, 1)\}

No.
```

Counting Relations

•Example: How many different reflexive relations can be defined on a set A containing n elements?

•Solution: Relations on R are subsets of A×A, which contains n² elements.

- •Therefore, different relations on A can be generated by choosing different subsets out of these n^2 elements, so there are 2^{n^2} relations.
- •A reflexive relation, however, must contain the n elements (a, a) for every $a \in A$.

•Consequently, we can only choose among $n^2 - n = n(n-1)$ elements to generate reflexive relations, so there are $2^{n(n-1)}$ of them.

Combining Relations

•Relations are sets, and therefore, we can apply the usual **set operations** to them.

•If we have two relations R_1 and R_2 , and both of them are from a set A to a set B, then we can combine them to $R_1 \cup R_2$, $R_1 \cap R_2$, or $R_1 - R_2$.

In each case, the result will be another relation from A to
B.

Combining Relations

•... and there is another important way to combine relations.

•Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that (a, b) $\in R$ and (b, c) $\in S$. We denote the composite of R and S by S°R.

•In other words, if relation R contains a pair (a, b) and relation S contains a pair (b, c), then S°R contains a pair (a, c).